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Abstract

An enthalpy-source based novel lattice Boltzmann technique is formulated for numerical simulation of conduction-dominated phase change
processes of single-component systems. The proposed model is based on a classical lattice Boltzmann scheme for description of internal energy
evolution with a fixed-grid enthalpy-based formulation for capturing the phase boundary evolution in an implicit fashion. A single particle den-
sity distribution function is used for calculating the thermal variable. The macroscopic energy equation is found to be recovered following the
Chapman–Enskog multiscale expansion procedure. It is also found that predictions from the present model agree excellently with results obtained
from established analytical/numerical models.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Freezing of pure substances has been an important area of
research over many years. Common applications include solid-
ification of a single-component system in phase change elec-
tronics cooling, semiconductor crystal growth, thermal process-
ing in conventional as well as non-traditional manufacturing
processes and freezing of ice in food-processing industries, to
name a few.

One of the major aspects of understanding freezing of pure
substances is the mathematical modeling and numerical sim-
ulation of the continuously moving liquid–solid interface and
the consequent release of latent heat during the process. In ad-
dition, such isothermal phase change processes involve abrupt
discontinuity of properties across the interface, which needs to
be appropriately taken care of.

Over the years, numerous studies have been executed to
model solid–liquid phase transitions, which can broadly be
classified as: (a) a grid consideration approach and (b) a latent
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heat representation approach. The grid consideration approach
may be further divided into front tracking [1–5] and fixed grid
[6–13] methods. In the front tracking scheme, the position
of moving liquid–solid interface is determined in every time
step, and separate governing equations for solid and liquid sub-
domains are solved, with matching boundary conditions pre-
scribed at the interface. On the other hand, the fixed grid method
implicitly captures the interface location by solving an addi-
tional differential equation for phase fraction, without necessi-
tating any explicit front tracking. In such approaches, the latent
heat is accounted for by employing either a temperature-based
formulation or by using an enthalpy-based formulation. The
temperature-based approach insists on retaining the tempera-
ture as the only state variable. In order to tackle the temperature
discontinuity across the interface in isothermal phase change
problems, an approximate numerical smoothing needs to be
used and a special integration scheme needs to be employed
to compute the latent heat [14–16]. The fixed-grid enthalpy-
based method, on the other hand, can further be divided into
various sub-categories. In the basic enthalpy-based scheme, en-
thalpy is used as the primary variable and the temperature is
calculated from a previously defined enthalpy-temperature rela-
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Nomenclature

b Number of lattice connection vector
cp Specific heat
c Propagation speed
ei Propagation velocity
fi Particle distribution function
f

eq
i Equilibrium particle distribution function

fl Liquid fraction
H Total enthalpy
kT Thermal conductivity
L Latent heat of fusion
q Heat flux
R Universal gas constant
St Stefan number
t Time
T Temperature
wi Weight coefficient
x, y Coordinate

Greek symbols

α Thermal diffusivity
ε Knudsen number

λ Relaxation factor
ρ Density
τ Relaxation time
�H Latent enthalpy
�x Lattice size in x direction
�y Lattice size in y direction
�t Time step
Φ Energy source term
Ω Relaxation parameter

Subscripts

0 Lattice centre location
i Direction i in a lattice
j Lattice index
l Liquid phase
m Phase changing point
s Solid phase
n Iteration level

Superscripts

n Iteration index
tion. Although this method gives reasonably accurate results for
metallic systems solidifying over a range of temperature [17], it
is complex and computationally expensive. In the apparent heat
capacity method, the latent heat is calculated from the integra-
tion of heat capacity with respect to temperature [6,7,18–20].
As the relationship between heat capacity and temperature in
isothermal problems involves a Dirac-delta function in theory,
the zero-width phase change interval must be approximated by
a narrow range of phase change temperatures. Thus, the size of
time steps must be small enough so that this temperature range
is not overlooked in the calculations. Such drawbacks, how-
ever, are not observed in the latent heat source or fictitious heat
flow method. In this approach, the latent heat is included in the
source term, which is obtained from a prescribed relationship
between latent enthalpy and temperature. Although the above
simulation strategy has become somewhat standardized over the
past few decades, solution of multi-scale melting/solidification
problems using this methodology still poses serious challenges,
primarily because of the associated computational complexities
and time-intensive simulation.

Recently, lattice Boltzmann method (LBM) has emerged
with huge potentials for solving partial differential equations
associated with fluid flow and heat transfer problems involving
morphological development of topologically complicated phase
boundaries. This is a relatively new approach that uses simple
microscopic kinetic models to simulate complicated macro-
scopic transport phenomena. Compared with the conventional
computational fluid dynamics (CFD) approach, the LBM is
simple in form, having high computational performance with
regard to stability and accuracy. Further, it is able to handle
complex geometry and boundary conditions, and is intrinsically
parallelizable. This method has originally been derived from the
lattice gas automata (LGA) model [21], and is a specially dis-
cretized form of the continuous Boltzmann equation. The LBM
effectively simulates physical transport phenomena by employ-
ing quasi-particles that populate the domain lattices. The quasi-
particles move across the lattice along links connecting neigh-
boring lattice sites, and subsequently undergo collisions upon
arrival at a new lattice site. For simulating physical phenomena,
the collisions between particles must obey pertinent physical
laws. Thus, a fundamental idea of the LBM is to construct sim-
plified kinetic models that incorporate the essential physics of
microscopic processes so that the macroscopic averaged prop-
erties obey the desired laws. More detailed descriptions of the
LBM can be found in the review article [22–24] and the refer-
ence books [25,26].

In the context of application of LBM to phase change prob-
lems, Wolf-Gladrow [27] first proposed an explicit finite differ-
ence formulation, with a relaxation parameter of unity pertain-
ing to the lattice Boltzmann equation for diffusion. De Fabritiis
et al. [28] developed a thermal lattice Boltzmann model for
liquid–solid phase transition by employing two types of qua-
siparticles for liquid and solid phases, respectively. Sman et al.
[29] developed a one dimensional convection–diffusion scheme
for simulating combined heat and mass transfer during cooling
of packed cut flowers. Miller et al. [30], subsequently, devel-
oped a simple reaction model for liquid–solid phase transition
in context of an LBM, with enhanced collisions, using a single
type of quasiparticle and a phase field approach. An extended
LBM for the heat conduction problem with phase change was
developed by Jiaung et al. [31], which can be considered as the
first systematic approach of coupling the conventional enthalpy
formulation with the discrete lattice Boltzmann equation. How-
ever, the above model lacks a thermodynamically-consistent
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accounting of latent heat evolution, and therefore, is not very
much suitable to be extended to more involved phase transfor-
mation problems involving multi-component systems.

Aim of the present work is to develop a hybrid LBM, ca-
pable of thermodynamically-consistent representation of phase
boundary evolution during conduction-dominated solidification
of a single-component system. For this purpose, an enthalpy-
based LBM is formulated, in conjunction with an appropriate
enthalpy updating scheme, so as to ensure a temperature field
that is consistent with local phase change considerations. The
model is subsequently tested to simulate formation of ice in a
two dimensional domain, as a representative problem. The re-
sults obtained from the lattice Boltzmann simulation are finally
compared with finite volume simulation results, to establish
authenticity of the proposed LBM for solving complex phase
change problems.

2. Mathematical formulation

2.1. Continuum model

The equivalent single-phase macroscopic thermal energy
conservation equation, in terms of total enthalpy, can be written
as:

∂t (ρH) = ∇ · (kT ∇T ) (1)

where ρ is the density, H is the total enthalpy, kT is the ther-
mal conductivity and T is the macroscopic temperature. The
total enthalpy, H , can further be decomposed into two com-
ponents, namely, the sensible enthalpy and the latent enthalpy,
and accordingly can be written as: H = cpT + �H , where cp

is the constant pressure specific heat. In order to establish a
single-component phase change, the latent heat contribution is
specified as a function of temperature, T , and the resulting ex-
pression is as:

�H = f (T )

{
L for T � Tm

0 for T < Tm
(2)

where Tm is the freezing temperature of the pure substance and
�H is the latent enthalpy content of a control volume; L being
the corresponding latent heat of freezing. Accordingly, Eq. (1)
simplifies to the following form:

∂t (ρcpT ) = ∇ · (kT ∇T ) − ∂t (ρ�H) (3)

in which the latent heat appears as a heat source term in the
governing equation. For constant thermophysical properties,
Eq. (3) can be written as:

∂tT = α∇2T + Φ (4)

where, Φ = −(1/cp)∂t�H , can be regarded as a latent heat
source term in Eq. (4).

2.2. Lattice Boltzmann model

As mentioned earlier, the LBM originates from a micro-
scopic description for the evolution of a non-dimensional par-
ticle distribution function, following the classical Boltzmann
equation. The particle distribution function, fi(x, t), is the
probability of finding a particle at location x and time t , mov-
ing in direction i with velocity ei = �xi/�t along the lattice
link and is given by the lattice Boltzmann equation (LBE) as:

∂tfi(x, t) + ei · ∇fi(x, t) = Ωi(f ) (5)

where Ωi(f ) represents the local change in the particle distri-
bution owing to particle collision. A simple single time relax-
ation BGK approximation [32] leads to the following form of
the linearized collision operator:

Ωi(f ) = − 1

τ

[
fi(x, t) − f

eq
i (x, t)

]
(6)

where τ is the relaxation time and f
eq
i (x, t) is the equilibrium

distribution function.
Introduction of the above collision operator in the LBE gives

the celebrated LBGK model:

∂tfi(x, t) + ei · ∇fi(x, t) = − 1

τ

[
fi(x, t) − f

eq
i (x, t)

]
(7)

Eq. (7) can be integrated in time to yield the evolution equa-
tion of the particle distribution function as:

fi(x + ei�t, t + �t)

= fi(x, t) − (�t/τ)
(
fi(x, t) − f

eq
i (x, t)

)
(8)

The pertinent macroscopic physical quantities, subsequently,
can be obtained from the above particle distribution function
information. For instance, for a heat diffusion problem, the tem-
perature can be obtained as:

T (x, t) =
b∑

i=0

fi(x, t) (9)

where b is the number of lattice connection vectors.
The equilibrium distribution function, appearing in Eq. (7),

can be described as:

f
eq
i (x, t) = wiT (x, t) (10)

where wi represents a weight factor along the direction i. For
a two dimensional nine velocity (d2q9) model, the discrete ve-
locities and weight coefficients assume the following forms:

ei =
{

(0,0), i = 0
(±1,0)c, (0,±1)c, i = 1,2,3,4
(±1,±1)c, i = 5,6,7,8

and

wi =
{4/9, i = 0

1/9, i = 1,2,3,4
1/36, i = 5,6,7,8

(11)

where c (= �x/�t = √
3RT ) is the characteristic speed.

The discrete velocities (i.e., values of ei ) and the weight co-
efficients (i.e., values of wi ) are determined so as to recover
the continuum governing equation from the LBM in the long-
wavelength and low-frequency limit. Therefore, the necessary
conditions imposed on ei and wi are as follows [33]:∑

wi = 1

i
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∑
i

wieiα = 0

∑
i

wieiαeiβ = 1

3
c2δαβ (12)

and the components of the grid velocities obey the following
relations:

8∑
i=0

ei = 0

4∑
i=1

eiαeiβ = 2c2δαβ

8∑
i=5

eiαeiβ = 4c2δαβ (13)

where δαβ is the Kronecker delta.
The equilibrium distribution function satisfies the following

relations:

8∑
i=0

f
eq
i =

8∑
i=0

wiT = T

8∑
i=0

eiαf
eq
i = 0

8∑
i=0

eiαeiβf
eq
i = 1

3
c2T δαβ (14)

In order to develop a phase change model consistent with
the above framework, the heat source term (Φ) of Eq. (4) needs
to be retained in the discretized Boltzmann equation. Thus, the
discretized phase change LBM takes the form [31]:

fi(x + ei�t, t + �t) = fi(x, t) − (�t/τ)
(
fi(x, t) − f

eq
i (x, t)

)
+ �twiΦ (15)

It is found that invoking the Chapman–Enskog expansion,
Eq. (14) recovers the macroscopic energy equation (4) (see
Appendix A) for the following modeling of thermal diffusiv-
ity [29]:

α = c2

6
(2τ − �t) (16)

It needs to be noted here that the term �H appearing in
Eq. (15), through the source term Φ , needs to be posed in
consistency with microscopic phase change considerations, in
order to avoid thermodynamically inconsistent solutions. In
fact, for accurate prediction of the liquid fraction, �H of each
computational cell needs to be updated according to the pre-
dicted macroscopic value of temperature each iteration within a
time step, for successful implementation of the present hybrid
method. Such an updating effectively attempts to neutralize the
difference in the nodal temperatures predicted by the internal
energy density distribution function, and that dictated by the
phase change considerations. For that purpose, a modified up-
dating scheme, in accordance with the formulation of Brent et
al. [34], is used, which is of the form:

[�H ]n+1 = [�H ]n + λ
[{h}n − F−1{�H }n

]
(17)

where n is the iteration level characterizing the updation stage,
h is the enthalpy of the concerned computational cell, and λ

is a suitable relaxation factor to smoothen convergence. In the
above formulation, F−1(�H) is the inverse latent heat func-
tion, which needs to be constituted in consistency with mi-
croscopic phase change considerations. A general prescription
of the above function, consistent with pertinent rules of phase
transformation, is outlined in [35]. For a phase changing pure
material F−1(�H) obtains a simplified form of:

F−1(�H) = cpTm (18)

3. Numerical implementation

3.1. Boundary conditions

A boundary can be introduced to a lattice Boltzmann model
by selecting the grid sites where the boundary is to be set and
evolving the particle distribution function in a different manner
at these sites. Two types of boundary conditions are described
for the present context, one is prescribed temperature and an-
other one is the prescribed heat flux.

Following Fig. 1, a Dirichlet boundary condition (i.e. pre-
scribed temperature) can be imposed on the left wall (tempera-
ture T0), for example. To determine f1, f5, and f8, first Eq. (9)
is invoked as:

f1 + f5 + f8 = T0 − (f0 + f2 + f3 + f4 + f6 + f7) (19)

Now, applying the bounce back rule at the wall, f1 = f3 −
(f

eq
3 − f

eq
1 ) and f5 = f7 − (f

eq
7 − f

eq
5 ), one obtains:

f1 = f3

f5 = f7

f8 = T0 − (f0 + f2 + 2f3 + f4 + f6 + 2f7) (20)

The boundary conditions for other walls follow the same pro-
cedure.

Fig. 1. Schematic plot of particle streaming and boundary condition for a d2q9
model.
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A Neumann boundary condition (i.e. prescribed heat flux)
can be implemented by following a conventional control vol-
ume based formulation. Applying an energy balance to the
boundary lattice j (refer to Fig. 1),

ρcp

j+1/2∫
j

t+�t∫
t

∂T

∂t
dt dV =

∫
A

t+�t∫
t

(qin − qout)dt dA (21)

where qin = qj is the prescribed heat flux and qout is the
flux leaving the control volume (which can be described by
Fourier’s law). Hence, Eq. (21) becomes:

ρcp

�y

2

(
T n+1

j − T n
j

) =
t+�t∫
t

[
qj − kT (Tj − Tj+1)

�y

]
dt (22)

where superscripts n and n + 1 represent time levels t and t +
�t , respectively. Applying an explicit scheme, the following
linear algebraic equation yields form Eq. (22):

ajT
n+1
j = (aj − aj+1)T

n
j + aj+1T

n
j+1 + qj (23)

where aj = ρcp�y/2�t and aj+1 = kT /�y. Eq. (23) can be
utilized to convert a prescribed heat flux boundary condition,
as an equivalent pseudo-isothermal boundary condition, which
in turn, can be implemented identical to the generalized formu-
lation for incorporation of Dirichlet type boundary condition,
described as above.

3.2. Overall solution algorithm

In a typical simulation, the initial temperature distribution,
T (x,0), along with the liquid-fraction field, fl(x,0), are pre-
scribed as initial conditions. The initial distribution function,
fi(x,0), is obtained by using one term in its Knudsen ex-
pansion, i.e., fi(x,0) = f

eq
i (x,0). The distribution function is

then evolved according to Eq. (15). The following pseudo code
demonstrates an overall procedure for implementing the present
hybrid LBM:

Start Program
Read the Geometry
Set Initial Temperature and Liquid Fraction Distributions
Calculate Initial Distribution Function
Loop for Time Steps
{

1. Impose Boundary Conditions
2. Propagate Particles (Streaming)
3. Calculate Equilibrium Distribution Functions
4. Calculate Relaxation
5. Obtain Temperature and Liquid Fraction Fields
6. Update Nodal Enthalpy
7. Go Back to Step 1 Until Convergence

}
Obtain Macroscopic Variables
End Program

It can be noted here that convergence in inner iterations is
declared if the following criterion is satisfied:

min

(∣∣∣∣T n+1 − T n

T n

∣∣∣∣,
∣∣∣∣�Hn+1 − �Hn

�Hn

∣∣∣∣
)

� 10−8 (24)
4. Results and discussion

For validation of the numerical code developed, first a simple
transient 2-D heat conduction problem, with known analytical
solutions [36], is solved. An excellent agreement is found be-
tween the present solutions and classical analytical solutions,
which has been omitted here for the purpose of brevity. Subse-
quently, the present code is employed to simulate an ice block
freezing problem, for which the geometrical and physical para-
meters are taken from Prapainop and Maneeratana [37]. Fig. 2
shows the problem domain (0.26 m × 0.13 m with an aspect
ratio 2), initially (t = 0) containing liquid water at a uniform
temperature Ti , which is greater than or equal to the freezing
temperature Tm. The left (x = 0) and bottom (y = 0) bound-
ary temperatures are fixed to a temperature T0, which is below
the phase change temperature, Tm. Solidification begins along
the left and bottom boundary surfaces and propagates into the
material. For simulation purpose the parameters are normalized
subsequently to cope up with the LBM. Accordingly, we set,
Ti = 3, T0 = −1 and Tm = 0. Further, the thermal diffusivity
ratio for the liquid and solid phase (αl/αs) is taken as 0.1 [38]
and the relaxation times are set to be different for the liquid and
solid phases. For the region (0 < fl < 1), the relaxation time
can be expressed by the relation: τ = 0.5+ (αl/αs)(τs −0.5)fl ,
where τs is the relaxation time corresponding to the solid diffu-
sivity, αs [31]. The other parameters are set as follows: �x =
�t = 1, αs = 1, kT l/kT s = 0.25 with kT s = 2, cpl/cps = 2 with
cps = 0.5,L = 1, and Stefan number St = cps(Tm − T0)/L =
0.5. Numerical simulations are performed with a 64 × 32 uni-
form grid system in a 9 speed square lattice (d2q9) over 3×105

time steps, corresponding to 1 min of physical time.
Fig. 3 shows the predicted isotherms at a time of 5 h. The

temperature distributions clearly show heat transfer through
both exposed edges (left and bottom), causing curved temper-
ature profiles, which clearly exhibit steep gradients of tem-
perature along the diagonal lines. The rate of heat transfer,
characterized by these isotherms, strongly depends on the diffu-
sivity ratio in the respective phases as well as on the prevailing
temperature gradients, which are implicitly influenced by dy-
namic locations of the freezing front. Incidentally, the freezing
front advances along the x = y diagonal line, which is obvi-
ous from the problem geometry and imposed boundary condi-
tions. A time history of temperature at the innermost cell, which
freezes last, is illustrated in Fig. 4. The time history exhibits
characteristic temperature gradients over liquid and solid re-

Fig. 2. Schematic of isothermal freezing of ice-block.
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Fig. 3. Temperature contour at time = 5 h.

Fig. 4. Temperature history of the innermost cell.

gions, and a ‘plateau’ indicating isothermal changes in phase
over a range of time. It takes around 46 hours for the water
to fully freeze, which is consistent with the real manufactur-
ing cycle which is around 48–50 hours [37]. The finite volume
prediction for the same in [37] is 42 hours, which shows that
the present LBM based computation is more close to the real
value compared with the finite volume prediction. Typical tem-
perature variations along the line x = y, for different times,
are depicted in Fig. 5. Abrupt changes in temperature gradient
represent locations at which a change in phase occurs, corre-
sponding to a specific instance of time. As time progresses, this
location appears to be further away from the lower left corner
of the domain, indicating the dynamic nature of front propaga-
tion. Further, a qualitative comparison of the results presented
in Fig. 5 with that reported in [37] shows that the nature of tem-
perature variations is consistent, which in turn establishes the
validity of the proposed algorithm.

Table 1 shows a comparison of the present model with the
continuum method, in terms of grid requirements and CPU
time. The comparison shows that the present method requires a
considerably less CPU time for effective simulation of generic
problems benchmarked in the contemporary literature. A com-
Fig. 5. Temperature plot at different time along the line x = y.

Table 1
A comparison of computational performance of the present model and a
continuum-based model, in terms of simulation speed and grid size require-
ments

Method of solution Grid requirement CPU time (h)

Continuum approach (fully
implicit scheme) [37]

104 × 52
Aspect ratio: 2

6 corresponding to 5 h
simulation time

Enthalpy based LB method 64 × 32
Aspect ratio: 2

4 corresponding to 5 h
simulation time on a
PIV 2.8 GHz PC

Table 2
A summary of grid sensitivity study

Grid size % deviation in
liquid fraction

% deviation in
temperature

48 × 24 0.92 1.48
56 × 28 1.25 1.64
82 × 41 1.36 1.96

Note: The percentage error is calculated using |φ − φz|/φ, where φz is based
on 64 × 32 lattices.

prehensive grid sensitivity study is also carried out, and the
outcome is presented in Table 2. It is revealed that the per-
centage error with respect to liquid fraction and temperature
predictions does not change appreciably with grid refinement,
beyond a threshold mesh distribution, which is much coarser
than typical refined mesh structures necessary for implementa-
tion of continuum-based classical models of phase transition.
This, in turn, demonstrates the effectiveness of the proposed
method as a practical tool for numerical simulation of solid–
liquid phase transition problems.

5. Conclusions

Phase change phenomenon of a single-component system
is computationally handled by a novel enthalpy-based lattice
Boltzmann model. A modified latent heat updating procedure
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is integrated with the internal energy evolution equation, for
capturing the phase change effects. Results obtained from the
present study are consistent with analytical as well as numerical
results reported in the literature. The present model can also be
easily extended to the solution of multicomponent solidification
problems, by judiciously modifying the latent heat updating
function. Future efforts will be devoted to include the effects
of thermo-solutal convection in a generalized lattice Boltzmann
framework, with a vision of establishing more computationally
elegant approaches for solving more complicated phase change
problems.

Appendix A

To perform the multi-scale Chapman–Enskog expansion in
the present context we must first expand the population function
with respect to the Knudsen number ε (� 1) as:

fi = f
(0)
i + εf

(1)
i + O(ε2) (A.1)

Since the diffusion equation is a linear differential equation,
the population function is expanded up to linear terms in the
small expansion parameter ε. Further, as the diffusion is a slow
process on large spatial scales, the following scaling is intro-
duced to expand the time and space derivatives [31]:

∂t ≈ ε2∂2t

∂x ≈ ε∂1x (A.2)

Next the population function fi(x + ei�t, t + �t) is expanded
in a Taylor series to obtain:

fi(x + ei�t, t + �t) − fi(x, t)

�
[
�t∂t + �teiα∂α + 1

2
(�t)2{eiα∂α(eiβ∂β + ∂t )

+ ∂t (eiα∂α + ∂t )
}]

fi(x, t) + O(�t3) (A.3)

Substituting Eqs. (A.1)–(A.3) into Eq. (15) and in the con-
secutive order of parameters ε, it is possible to arrive at the
following equations:{
ε2∂2t + eiαε∂1α + 1

2
(�t)eiαε∂1α[eiβε∂1β + ε2∂2t ]

+ 1

2
(�t)ε2∂2t [eiαε∂1α + ε2∂2t ]

}

× (
f

(0)
i + εf

(1)
i

) = − 1

τ

(
f

(0)
i + εf

(1)
i − f

(0)
i

) + wiΦ (A.4)

O(ε0) : f
(0)
i = f

eq
i (A.5)

O(ε1) : ∂1t f
(0)
i + ∂1αeiαf

(0)
i = − 1

τ
f

(1)
i (A.6)

where the notation (∂1x)α = ∂1α has been used. Truncating the
terms with order of magnitude larger than O(�t2) and O(ε3),
one obtain:[
ε2∂2t + eiαε∂1α + 1

2
(�t)ε2eiαeiβ∂1α∂1β

](
f

(0)
i + εf

(1)
i

)
= − 1

εf
(1)
i + wiΦ (A.7)
τ

Summing Eq. (A.7) over all states gives:∑
i

ε2∂2t fi +
∑

i

eiαε∂1α

[
f

(0)
i + εf

(1)
i

]

+ 1

2
(�t)

∑
i

ε2eiαeiβ∂1α∂1β

[
f

(0)
i + εf

(1)
i

]

= − 1

τ
ε
∑

i

f
(1)
i + Φ

∑
i

wi (A.8)

Recognizing that the population functions satisfy the follow-
ing relations:∑

i

f
(α)
i =

∑
i

eiαf
(α)
i = 0 for α = 1,2 (A.9)

Eq. (A.8) assumes the following form:∑
i

ε2∂2t fi + ε∂1α

∑
i

eiαεf
(1)
i

+ 1

2
(�t)ε2∂1α∂1β

∑
i

eiαeiβf
(0)
i = Φ

⇒ ε2∂2t

∑
i

fi + ε∂1α

∑
i

eiα(−τeiα∂αfi − τ∂tfi)

+ 1

2
(�t)ε2∂1α∂1β

∑
i

eiαeiβf
(0)
i = Φ

⇒ ∂t

∑
i

fi + ε∂1α

∑
i

eiα

[−τeiαε∂1α

(
f

(0)
i + εf

(1)
i

)
− τε2∂2t

(
f

(0)
i + εf

(1)
i

)]
+ 1

2
(�t)ε2∂1α∂1β

∑
i

eiαeiβf
(0)
i = Φ

⇒ ∂t

∑
i

fi − τε2∂1α∂1β

∑
i

eiαeiβf
(0)
i

+ 1

2
(�t)ε2∂1α∂1β

∑
i

eiαeiβf
(0)
i = Φ

⇒ ∂tT − τ

3
c2∇2T + �t

6
c2∇2T = Φ

⇒ ∂tT =
[
c2

6
(2τ − �t)

]
∇2T + Φ = α∇2T + Φ (A.10)

Hence the macroscopic energy equation (4) is recovered
through the Chapman–Enskog expansion.
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